$6^{\text {th }}$ Grade Math

Module 4: Expressions and Equations

Math Parent Letter

This document is created to give parents and students a better understanding of the math concepts found in Eureka Math (© 2013 Common Core, Inc.) that is also posted as the Engage New York material which is taught in the classroom. In Module 4, Topic D of Eureka Math (Engage New York), students formally utilize their understanding of expressions in order to expand, factor, and distribute.

Focus Area Topic D:

Expanding, Factoring, and Distributing
Expressions

Words to Know:

Factor- a number or variable that is mltiplied to get a product.
Variable: a letter used to represent a number
Simple Expression - a number, a letter which represents a number, a product whose factors are either numbers or letters involving whole number exponents, or sums and /or differences of such products.
Product: the solution when two factors are multiplied.
Equivalent Expressions - Two simple expressions are equivalent if both evaluate to the same number for every substitution of numbers into all the letters in both expressions.
Equation - an equation is a statement of equality
between two expressions. $3 \mathrm{a}=9$
Coefficient - the factor that multiplies the variable.

Writing Addition and Subtraction Expressions

Problem and Solution:

Write an expression to show the sum of w and 4 and draw a model.

Solution: w+4 or $4+w$
Students understand that these two expressions are equivalent.

Focus Area Topic D:

Expanding, Factoring, and Distributing Expressions
 Writing Addition and Subtraction Expression

Write an expression to show the difference of p and 3 .

Answer: p-3
Could we also say 3 - p?
Answer: No, if we started with 3 and took p away, the models would not match. For instance if the value of p is 10 then 10 minus 3 is not the same as 3 minus 10 .

Students recognize that these two expressions are not the same because the commutative property does not apply to subtraction.

Writing and Expanding Multiplication Expressions
 Problem and Solution:

Simplify by finding the product of the following expression:
$5 \cdot \mathrm{~m} \cdot 3 \cdot \mathrm{p}=5 \cdot 3 \cdot \mathrm{~m} \cdot \mathrm{p}$
Solution: 15 mp
In topic D students will also expand multiplication expressions.

Write the following expressions in expanded form:
35mp
Solution: $5 \cdot 7 \cdot \mathrm{~m} \cdot \mathrm{p}$

Factoring Expressions:

What expression could we use to represent this model?

How many a's are in the expression? 2
How many b's are in the expression? 2
What expression could we write to represent the model?
$(a+b)+(a+b)=2(a+b)$

Focus Area Topic D:

Expanding, Factoring, and Distributing

Expressions

Writing and Expanding Multiplication Expressions

Problem and Solution:

Use the GCF and the distributive property to write an equivalent expression for $6 x+9 y$.

The GCF of 6 and 9 is 3 .
Solution: $3(2 \mathrm{x}+3 \mathrm{y})$ is an equivalent expression for $6 x+9 y$.

Distributing Expressions:

Students model and write equivalent expressions using the distributive property. They move from a factored form to an expanded form of an expression.

Example and Solution:

What expression could we write to represent the new diagram?
Solution: $2 a+2 b$
What conclusion can we draw from the models about equivalent expressions?
Solution: $2(a+b)=2 a+2 b$
Prove these two forms are equivalent by substituting numerical values for a and b .

Solution:

Let $\mathrm{a}=5$ and $\mathrm{b}=3$
$2(5+3)=2 \cdot 5+2 \cdot 3$
$2(8)=10+6$
$16=16$

Problem and Solution:

Create a model for the expressions $4(2 \mathrm{~h}+\mathrm{g})$. Then write another equivalent expression using the distributive property.

Solution: $8 \mathrm{~h}+4 \mathrm{~g}$

Focus Area Topic D:

Expanding, Factoring, and Distributing
 Expressions

Writing Division Expression

Students write numerical expressions in two forms, dividend \div divisor and $\frac{\text { dividend }}{\text { divisor }}$, and note the relationship between the two.

Problem and Solution:

Write each of the following expressions in two ways.

1. 15 divided by 5

Solution $15 \div 5$ and $\frac{15}{5}$
2. a divided by 4

Solution a $\div 4$ and $\frac{a}{4}$
3. g divided by the quantity h plus 3

$$
\text { Solution } \mathrm{g} \div(\mathrm{h}+3) \text { and } \frac{g}{h+3}
$$

4. the quotient of 6 and m

Solution $6 \div \mathrm{m}$ and $\frac{6}{m}$
Write an expression using vocabulary words to represent each given expression.
Problem and Solution:

1. $5 \mathrm{~d}-10$

Possible solution: The product of 5 and d minus 10 or 10 less than 5 times d.
2. $\frac{b}{d+2}$

Possible solution: The quotient of b and the sum of d and 2 .

Write Expressions in Which Letters Stand for Numbers

1. Three more than 4 times a number c .

Solution: $4 \mathrm{c}+3$
2. The quantity of 4 increased by g, and then the sum is divided by 9 .

Solution: $\frac{4+g}{9}$
3. Tai earned 4 points fewer than double Oden's points. Oden earned p points.

Solution: $2 \mathrm{p}-4$

